服务与支持

频谱分析仪应用解惑之频率分辨力

阅读 597

频谱分析仪应用解惑系列文章第一篇令人惊呼,在移动互联网的DT时代,Data太多,但高品质的Data并不多,鼎阳硬件智库提供了好Data,读之如久旱逢甘霖矣! 不亦快哉! 更何况频谱分析仪的高品质文章之严重贫乏久矣!

应用解惑系列的第二篇谈到了“频率分辨力”,频率分辨的能力。文中提出影响频谱仪的频率分辨能力有四个因素:RBW,矩形系数,相位噪声和剩余调频并进行了深入阐述。
文中还饶有趣味地解释了分辨率,准确度和精确度的区别。甚至还介绍了Marker的分辨和精确度问题。

值得提及的是,文中显示鼎阳科技X系列新成员、SSA3032X频谱仪的频率分辨率带宽(RBW)居然达到了1Hz。

带宽是频域分析中的常见指标,在上一部分的文章《频谱分析仪应用解惑之带宽》中,我们讲述了频谱分析仪中常见的分辨率带宽和视频带宽,文中提到RBW的带宽和矩形系数是影响测量频率分辨力的两个主要因素,另外还有近端的相位噪声和本振的剩余调制。相位噪声是一个复杂的因素,本文仅从频谱分析仪的频率分辨力这个角度来阐述。在具体操作上,仪器的显示点数也在形式上影响着观察到的频率分辨力。如图1所示为影响频率分辨力的四个因素。
频谱仪的波横 
图 1 影响频谱分析仪频率分辨力的四个因素

我们先来解释几组测量中容易混淆的概念,一组是分辨率(Resolution),准确度(Accuracy)和精确度(Precision),一组是频谱分析仪的频率分辨率和频率分辨力。频谱分析仪是个复杂的测量系统,其准确度和精确度须要测量不确定度表示,本文不在此详述。

分辨率是个显示度量单位,通俗讲就是测量刻度的精细程度,是一个静态参数。准确度和精确度是用来度量测量值和真实值之间差别的参数。准确度表示测量值和真实值之间偏离的程度,是对系统误差和校准的度量;精确度用来表示多个测量值分布的离散程度,是对测量过程中随机噪声的度量。

我们举一个例子:多次测量一个值然后求平均。见图2,平均值和真值之间的偏差表明了这次测量活动的准确度,多次测量值分布的位置表明了这次测量活动的精确度。而分辨率,准确度和精确度之间其实是没有什么关系的,准确度差的测量系统可能拥有很高的精确度,分辨率高的测量系统可能也完全不具备好的精确度和准确度。例如,一把尺子的分辨率到1 mm,但是由于刻度分布不均,测量值和真实值的差别达到了10 mm,准确度认为比较差,这种情况下这把尺子分辨率再高也并卵,然而由于测量系统的科学严谨,若干次测量的偏差都在2 mm左右分布,表明这个测量过程的精确度还是比较高的。
频谱仪的精度 
图 2 准确度和精确度

再来结合频谱分析仪的基本概念,频率分辨率就是频率轴的最小刻度单位,通常的频谱分析仪的频率分辨率都能够达到1Hz。但这并不是指拥有区分出频率相差1Hz的两个正弦波的能力,分辨率仅仅指显示刻度。实际的频率分辨力要靠分辨率带宽(RBW)来完成,也就是实际能够区分出的频率是个在某个频率点上具有一定带宽的信号,而不是落在某个频率点上的一条细线,通常的频谱分析仪的分辨率带宽能够达到1 kHz,100 Hz等。

分辨率带宽原理上是选频高斯滤波器的形状,量化的定义是距离滤波器峰值衰减3dB处的带宽,同时还约束了矩形系数的要求,作用上指将两个不同频率的信号清晰分辨出来的能力,这两个概念已经在上一篇文章中详细阐述。

通常,频谱分析仪的矩形系数都能够达到5:1左右,如图3所示。

图 3 矩形系数示意

如下图4所示,随着频率分辨能力的变化,两个临近的不等幅信号的分辨程度是不同的。

图 4  RBW分辨不等幅信号的能力

如图5表示了鼎阳科技SSA3032X在RBW为1 Hz时的频率分辨能力。
频谱仪 
图 5   鼎阳科技SSA3032X在 RBW为1 Hz时的频率分辨能力

细心的同学可能会问,为何RBW滤波器的矩形系数定义会以60dB为界?如果矩形系数代表了频谱分析仪分辨不等幅正弦信号的能力,那如何约束高于底噪而低于60dB的不等幅信号的测量能力? 

这就要涉及到频谱分析仪本地振荡器(后文简称LO,Local Oscillator)的稳定程度,因为本振本身的不稳定,其相位噪声可能将靠近载波频率附近60dB以下的信号全部淹没,这时矩形系数已经没有测量意义了。

什么是相位噪声?相位噪声如何会影响频谱分析仪的频率分辨能力?

频谱分析仪的LO都是由参考源(通常是晶体振荡器,XO)倍频而来。没有哪种参考源是绝对稳定的,它们都在某种程度上受到随机噪声的频率或相位调制的影响,这个影响程度随时间在变化。时间的稳定度可以分为两类:长期稳定度和短期稳定度。长期稳定度是指时钟频率偏离绝对值的多少,一般用ppm(百万分之一)来表示;短期稳定度是时钟相位瞬态的变化,在时域上称抖动(jitter),在频域上称相位噪声(Phase Niose),表示为指相对于载波一定频偏处的1Hz带宽内的能量与载波电平的比值,相应的单位为归一化的dBc/Hz。如图6所示为抖动和相位噪声之间的区别。

相位噪声 
图 6 抖动和相位噪声

在系统层面,相位噪声反映了仪器整个时钟环路的稳定度,数字部分的ADC与数字中频处理也会有影响,但是对相位噪声最主要的影响因素仍是参考源及时钟环路,选型和设计需要谨慎。

现代频谱分析仪普遍基于外差(Heterodyne)接收机“频率选择”的结构,混频器将输入的射频信号和本振信号相乘然后滤波,得到变频后的中频信号。即使输入的射频信号是一个很纯净的正弦波,混频器也会将本振的相位噪声忠实地带入混频结果,形成一个具有相同相位噪声的中频信号。

并不是所有的测量都会受到相位噪声的影响。相位噪声和中频的能量是固定的比例关系,当信号电平远大于系统底噪时,这个相位噪声才会大于系统的底噪,那么它将就会明显地出现在载频的周围,如图7所示。

电路 
图 7 本振的相位噪声体现在对能量信号的测量结果中

在矢量信号分析中,信号的相位也包含着重要的信息,本振的抖动将恶化中频相位的信噪比,所以相位噪声对矢量信号的EVM也有着重要的影响。

因此,当我们对包含了本振相位噪声的中频进行“峰值检测”时,相位噪声就会体现在测量结果中。在某个RBW下,距离这个频率很近同时幅度又高于系统显示平均噪声电平的另一个信号,虽然可被RBW在频率轴分辨出来,但仍会隐藏在相位噪声之下,如图8所示。当然,相位噪声也是一种随机噪声,它和系统的显示平均噪声电平一样,随分辨率带宽的变化规律一致,若将分辨率带宽缩小 10 倍,显示相位噪声电平将减小10 dB。这个原理将在后续文章中阐述。这种情况下需要使用超过实际分辨率的RBW来测量,代价就是增加了系统的扫描时间。

频谱仪的相位噪声

图 8 相位噪声会影响不等幅信号的分辨能力

 相位噪声只会影响载波附近的小信号的分辨。随着距离载波的频率而逐渐衰减,近端的相位噪声固然影响了频率分辨能力和幅度动态范围;但是当距离载波足够远时,远端的相位噪声会低于系统的显示噪声平均电平,如图9所示为基于鼎阳科技SSA3032X在SPAN=4MHz时观察到的相位噪声和显示平均噪声电平。

频谱仪

图 9  鼎阳科技SSA3032X在SPAN=4 MHz时观察相位噪声和显示平均噪声电平

需要说明,在将参考源倍频得到本振的过程中,稳定度也将按倍频比例恶化,其结果是相位噪声变差。因此相位噪声的标定通常要对应特定的测量频率,例如在500 MHz,1 GHz等频率点测量;典型的相位噪声曲线经常要提供多个频率点的情况,例如偏离1 kHz,10 kHz,100 kHz分别给出测量值,便于横向比较。

频谱仪

图 10  鼎阳科技SSA3032X在1 GHz偏移10 kHz处的相位噪声

如何确定一台频谱分析仪的相位噪声呢?

一般情况下我们关注的是近端相位噪声,也就是距离载频1 MHz以内的相位噪声。使用一个高精度信号源(此信号源的相位噪声必须小于频谱分析仪的相位噪声)设置1 GHz,0dBm的正弦波,频谱分析仪设置的RBW在合适的扫描时间例如1 kHz,此时分别观察距离峰值10 kHz,100kHz位置的差值,根据RBW归一化到1Hz即可得到在1 GHz下偏移10 kHz,100kHz的相位噪声水平。如图10所示为鼎阳科技SSA3032X在1GHz,偏移10KHz处的相位噪声。

下面来说下剩余调频(Residual FM)。调制在时钟上的噪声,造成RBW滤波器的高斯形状上有波浪一样的凸起,就像频率调制的效果。这个现象限制了频谱分析仪能够做到的最小RBW,也就是限制了频谱分析仪的频率分辨力,因为不知道在这种情况下这种波浪到底来源于被测信号还是来源于本振。本振信号精确的剩余调频需要使用相噪仪来测量。现在我们使用的参考源的剩余调频已经很小,在1 kHz的RBW和视分比为1的条件下测试,剩余调频只有十几Hz,相比于当前RBW几乎可以忽略。

最后要注意频谱分析仪显示点对于实际观察到的频率分辨率的影响。由于频谱分析仪的测量结果只能通过Marker来读出某个确定点的频率和幅度,所以观察结果的分辨率和精确度都受到Marker的影响。

Marker的分辨率通常和仪器的分辨率一致,常为1 Hz。而Marker的精确度则由Span和扫描点数所决定,关系为Span/(扫描点数-1)。例如,鼎阳科技SSA3032X的屏幕显示像素点为751,那么在3GHz扫宽情况下,每个Marker的精确度能到3 GHz/750=4 MHz,我们称这个宽度范围为数据桶“Bucket”,数据桶中所有的数据经过检波最终显示为一个点。这时我们看到的所有显示结果和Marker读数都是在4 MHz为步进单位。

在这种情况下还能够分辨出数据桶内的数据吗?如何能够提高频率分辨力呢?很多频谱分析仪提供了Marker的频率计数器功能,可以在Marker步进单位很低的情况下,识别出数据桶内部最大峰值所在的真实频率点。

频频仪

图 11 鼎阳科技SSA3032X的频率计数器

本为虽然主要讲述频谱分析仪频率轴的分辨力,但是其中也涉及到了各种噪声,包括相位噪声,本底噪声(也就是显示平均噪声电平),这些噪声同时影响着频率分辨力和幅度的动态范围,请继续阅读下一篇《频谱分析仪应用解惑之噪声与测量》。

服务与支持

频谱分析仪应用解惑之EMI测试

阅读 611

频谱分析仪是射频微波领域的万用表,在产品可靠性、数字电路和电源设计领域它也有着重要的用途——无处不在的EMI测试。

EMI通常指电子设备对外产生的电磁干扰,当电子设备存在突然变化的电压或电流,即dV/dt或dI/dt很大,便会产生交变的电磁场,从空间辐射或导体传导出去,影响到周边其他的电子设备。它和EMS同为EMC的一部分,

EMC(Electro Magnetic Compatibility 电磁兼容性)=EMI(干扰度)+EMS(抗扰度)
这里Compatibility常译为“兼容性“,许多文章讲EMI“一致性”测试,说的都是同一个词。

一、EMI概述

一般来说,电子类产品开发过程中EMI测试的实施常分为EMI诊断,EMI预兼容测试和EMI兼容测试这几个阶段,各阶段的目的和方法都是不同的。

EMI测试阶段

图 1 EMI测试阶段

EMI的诊断测试和预兼容测试,很大程度上都是为认证性的兼容测试存在的。首先,电磁兼容测试是产品质量的内在要求,每一个电子设备或系统都要在预定的电磁环境中能够正常工作,同时也不能过于影响其他电子设备或系统,这需要有一套规范的质量标准。其次,几乎所有的电子类产品都不得不通过电磁兼容测试认证,这是国家和组织的技术壁垒,产品要想进入这些市场必须有强制性认证,这方面世界各个地区都有各自的标准。

电磁兼容认证的步骤苛刻庞杂,正式的产品认证需要大量测试设备和测试过程,费金耗时。因此,在产品研发设计的各个阶段中都应尽早发现和解决各个级别的电磁兼容的问题,提升产品的过程质量,避免最后的产品认证测试不通过,导致同样费金耗时的返工整改。(多说一句,电磁设备对人的影响属于电磁兼容的范畴吗?概念上讲并不是,而且电磁对人的生理影响尚未有科学依据,所以还没有划归到电磁兼容领域。)

从图 1中可以看到,在产品开发的各个阶段,EMI测试的重点是不同的:

• EMI诊断和调试(Diagnosis)

EMI诊断和调试在单元和产品设计阶段,主要是遵循一些电磁兼容的设计原则,对电源/时钟/接口线缆/主要芯片等对象,通过合理的布局/接地/屏蔽/走线/滤波等技术完成略有重点的设计和调试,不是为了测量EMI的精确结果,而是为了找出EMI的根源,从而改善产品设计,既是为了后期产品集成后通过EMI兼容认证,也是为了产品内部相互稳定的可靠性设计。

EMI诊断在实验室使用普通的测试仪器即完成,例如带有FFT分析功能的中高端示波器,普通的频谱分析仪,近场探头,手艺好的工程师还可以自己制作性能良好的近场探头,对于很多较强的EMI辐射,例如某些回路过大的开关电源,甚至只需要一根裸露的导线即可探测到空间中的骚扰信号。这种定性分析主要针对的是硬件设计人员,目的是要快捷简便,成本低廉,重复性好。

使用频谱分析仪和近场探头进行EMI诊断 

图 2 使用频谱分析仪和近场探头进行EMI诊断

• EMI预兼容测试(Pre Compliance)

EMI预兼容测试在产品原型和试产阶段,一般要在产品级或系统级进行预兼容(Pre Compliance)测试,预兼容并没有一个明确的参考标准,就是尽量低成本地模拟兼容测试标准,对EMI状况进行较正式的摸底,避免在正式的兼容测试中失败。

预兼容测试会涉及到一些近似具有认证级设备功能的测试设备,例如单独的试验场所,具备EMI滤波器和准峰值检波功能的频谱分析仪或入门级EMI接收机,人工电源网络或电流钳,隔离变压器,低端的电磁屏蔽箱,带电流注入功能的电源(EMS测试)等,并要基本了解该产品需要达到的认证标准,有比较明确的测试目标,以便为产品留足认证通过的空间,目标就是用现有的设备尽量模拟真实认证环境。

使用带有准峰值检波的频谱分析仪和LISN进行传导骚扰预兼容测试

 图 3 使用带有准峰值检波的频谱分析仪和LISN进行传导骚扰预兼容测试

• EMI兼容测试(Compliance)

EMI兼容测试主要针对产品级进行认证测试,这个阶段必须需要到专业的,有认证资质的EMC机构,使用符合标准的专业的测试设备和环境,遵循EMI标准规定的校准过程,测试方法和执行步骤,选择特定产品的限制标准进行比较,按照标准规定的方法分析测量数据,并依照标准格式给出报告,目标就是拿到认证资格证明。兼容认证测试标准严格,过程昂贵,时间冗长,必须尽量减少兼容测试的次数,以节省成本和加快产品上市时间。

EMI兼容测试,或者往大了说EMC兼容测试,是一个独立的大行业。IEC规定的电磁兼容标准以及衍生出的产品类和产品标准,很难由各个公司的产品部门执行,由此诞生了专门的电磁兼容认证测试机构,电磁兼容测试设备,以及由此衍生出的电磁兼容整改业务,都有一大批专业组织和人才。

EMC兼容测试实验环境

 图 4 EMC兼容测试实验环境

如果把EMC测试比作英语考试,EMC诊断就像是平时的课堂测验,预兼容测试就像考前做模拟真题,正式的兼容测试就像是终极的四六级考试,而林林总总的整改机构就是各种课外补习班 —- 说句偷懒的话,最终的过级考试严格繁琐,原则却是60分万岁,毕竟一分质量需要一分成本,而且最终对外只看那一纸证明;不过话说回来,想要60分,至少要按照80分去学习,在模拟题上做70分才敢上考场,侥幸是不行的,不然考试费用就白瞎了。

在成本和质量之间,无论是个人还是公司,都要做到这方面的平衡。

二、EMC标准

IEC作为电工电子类国际标准组织,其下属的CISPR和TC77制定了大部分EMC基础标准和产品标准:IEC 6xxxx和CISPR xx。其他各国和组织都在IEC的基础上引申或直接使用,如下图中所示,中国的GB,欧盟的EN,美国的FCC等。

EMC国际和国家地区标准

图 5 EMC国际和国家地区标准

CISPR和TC77规定了EMC的基础标准,通用标准和产品(类)标准三大类型。

基础标准:CISPR 16/17,IEC61000-4等,描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据,不涉及具体产品;
通用标准:IEC 61000-6,按照设备使用环境来划分,所有产品必须首先符合通用标准,当产品没有特定的产品类标准可以遵循时,直接使用通用标准来进行EMC测试;
产品标准:CISPR 11~15,CISPR20~25等,针对某种产品系列的EMC测试标准。往往引用通用标准,但根据产品的特殊性提出更详细的规定。例如CISPR 11规定了工业科学医学设备的测量方法和限值,CISPR22规定了信息产品的测试方法和限值,产品标准涵盖了现有绝大部分电子类产品。

对于某一个特定产品,应怎样知道应选取哪个合适的标准进行测试?首先要明确产品的使用场景以及要选取的地区标准,比如中国、美国、欧洲、日本?信息科技设备 (ITE),工医科 (ISM)?家用、商用、轻工业、重工业?室内、室外?选取对应的产品标准或产品类标准,确定测试项目的限值;如果没有合适的产品类标准,则按相应的通用标准确定测试项目限值;最后,按基础标准的要求进行每个测试项目,场地、测试方法、测试仪器必须满足基础测试框架的要求。
看下基础标准CISPR16(对应GB6113/EN55016)的内容,

频谱仪

CISPR16分为四个部分:第一部分为测量设备的规范,包括EMI接收机,人工电源网络,吸收钳,天线场,夹具校准等测量设备的规范;第二部分为测量环境,测量方法,校准场地和测量程序等;第三部分为术语和报告等;第四部分为数据统计方法等。

对于频谱分析仪来说,其用于EMC预兼容测试时的功能和性能应遵循CISPR 16-1-1测试设备中的相关规定进行设计和校准,由于测量结果读数与检波方式有关,因此该标准中明确规定了准峰值,峰值,平均值等几种检波方式;测量过程应遵循CISPR16-2-x中的相关规定;而测量数据和报告应遵循CISPR16-3以及4中的相关规定。但是频谱分析仪和标准的EMI接收机仍是不同的,因为频谱分析仪并不能满足标准中的所有规定。

了解EMC标准的最佳途径是IEC网站 http://www.iec.ch/emc,条理清晰,描述严谨,推荐浏览。

三、EMI预兼容测试系统

作为质量成本的一部分,EMI测试尽量在产品设计早期阶段的介入是必要的。上文提到,IEC标准分为三大类型,基础标准,通用标准和产品标准,考虑到测量方法的通用性,本节从基础标准和通用标准入手,介绍EMI兼容测试的系统。在CISPR16和IEC61000系列中,大致可以认为测量项目分为下图的类别。在实验室能进行的EMI预兼容测试,包括传导骚扰和辐射骚扰两部分,也就是下图中的笑脸。

EMC基础标准和通用标准的内容

图 6 EMC基础标准和通用标准的内容

传导发射骚扰测试系统

传导发射骚扰是最基本的一个电磁骚扰,主要沿着导体传播。它主要是由于电源不合格引起的,指使用交流供电的设备在运行过程中对处在相同电网下其他设备的干扰信号。所有的电子产品在用交流电源时都会对电网发出骚扰信号,这类信号低频居多,EMC标准规定的骚扰频率范围通常是从 9 kHz 到 30 MHz。

如果传导骚扰的信号过大,就会影响整个电网的供电质量,进而干扰到同一片交流电网下其他设备的正常运行。传导干扰要对设备电源连接到电网的三条线,红/黄色火线L(LIVE),黄绿/黑色地线E(Earth),蓝色零线N(NEUTRAL),分别独立的测试并出具三份报告。当设备存在较长的电信连线(例如网线,USB线)时,也要考虑从电信连线上对对端设备的干扰信号。在某些LISN不适用的场合,可以考虑使用电流钳。

使用频谱分析仪进行传导骚扰预兼容测试的典型系统

图 7 使用频谱分析仪进行传导骚扰预兼容测试的典型系统

传导骚扰的EMI测试通常要带电运行,而且需要区分测试结果中的骚扰究竟来自于被测设备还是电网中原来就存在的骚扰,因此需要有特定的隔离设备组合:
线性阻抗稳定网络LISN(Line Impedance Stabilization Network):由于电源传导发射的强度与电网的阻抗有关,为了使测量具有唯一性,必须在特定的阻抗条件下测量,LISN就提供了这样一个环境,CISPR标准规定的LISN为50Ω/50μH。

LISN也对来自电网的干扰信号进行滤波,使电网内的干扰与被测设备相互隔离,但是将被测试设备对电网的干扰耦合出来,送到LISN的输出测试端,提供标准的共模和差模阻抗,再送出给测试设备(一般是频谱仪或EMI接收机)。LISN是传导测试中的核心设备,本质上讲它是一个单向高通滤波器,只将特定频段的干扰信号筛选出来进行测试。

隔离变压器:由于LISN的设计原理限制,它的供电存在较大的漏电流,要求实际应用时需要良好接地,必须要加隔离变压器与电网隔离开使用。
瞬态限幅器:传导骚扰可能存在很大的能量,为防止测试设备过载或烧毁,需在频谱仪的测量端口前加限幅保护,并在结果中补偿。
被测设备:测量对象一般是交流供电端的三条线,以及部分的电气信号线。
测试设备:具有符合EMI传导测试功能的EMI接收机或频谱分析仪。

辐射发射骚扰测试系统

数字设备由于脉冲电流和开关电源的使用,具有丰富的谐波,一旦接地回路或接口处理不当就会对外产生较强的辐射骚扰,而芯片部分的低压使系统的抗扰度降低。这些辐射骚扰的频率没有特定的范围,从测试标准上看通常从 30 MHz 到 1 GHz /18 GHz。

近场测试非常适合产品开发阶段辐射骚扰的EMI诊断。在这个阶段,标准测试方法或许能给出精确的结果,但却无法显示问题的来源所在,近场探头就是很合适的定位工具;然而必须认识到,近场探头的测试结果几乎不能给出有关设备辐射水平的准确信息,误差和波动可达到20dB以上。使用近场探头测试的过程中,要保证测量结果远小于标准中规定的骚扰限值;在整改过程中,也要保证每次尝试整改后的复测结果好于前面的各种测量。为了通过近场测试大致了解产品是否能通过最终的兼容测试,需要在已经确知结果的样品上进行多次尝试。 

使用频谱分析仪进行辐射骚扰预兼容测试的典型系统

图 8 使用频谱分析仪进行辐射骚扰预兼容测试的典型系统

辐射骚扰不像传导骚扰固定在传输线上,它是向四面八方发射的,所以需要尽可能地测试产品所有的位置,这个密度和时间并没有在标准中准确给出,需要根据产品的特点进行特定测试。测试的间隔越细,每个位置和角度测试的时间越长,就越能测试出真实辐射长度,但是成本也越高了。

辐射骚扰预兼容测试系统需要用到各种天线,各种规格的屏蔽暗室,可灵活旋转的测试台和可升降天线杆,能够校准天线频响的频谱分析仪或EMI接收机,这些辅助设备一般公司很难备齐,所以不在这里详述。辐射问题仍推荐使用近场探头完成最低成本的EMI测试评估,准确度虽然不高,但是能排除大部分问题了。

四、经济型EMI预兼容测试系统的推荐配置

经济型的EMI预兼容测试系统方案的推荐配置:

1,接地良好的实验室或实验台:参见图 3

2,频谱分析仪:SSA3021X,9 kHz~2.1 GHz:参见图 2和图 3

作为性价比最高的国产频谱分析仪,SSA3000X 系列具有便捷的操作界面和简洁的显示风格,采用成熟的数字中频技术,最小分辨率带宽(RBW)低至10Hz,标配前置放大器,显示平均噪声电平(DANL)达-161 dBm/Hz,具备出色的微小信号测量能力,全幅度精度<0.7 dB,测量结果精确可信,适用于研发,教育,生产,维修和相关领域,对EMI诊断和EMI预兼容测试也有相应的功能支持。

频谱分析仪SSA3021X

图 9 频谱分析仪SSA3021X

3,SSA3000X的EMI预兼容测试套件: EMI-SSA3000X,支持EMI滤波器和准峰值(QP,Quasi Peak)检波器

基础标准CISPR 16-1-1规定了测量设备的EMI滤波器和准峰值检波器标准。EMI滤波器仍是准高斯形状,只是其脉冲带宽定义为-6dB,相比于传统的高斯滤波器具有更好的频率选择性。

准峰值检波是一种快速充电,慢速放电的检波器,时间加权的检波方式,它将时间上间断出现的骚扰信号进行幅度的加权平均作为结果显示,这样即使幅度很大但是出现概率很低的骚扰信号可能得到较低的准峰值检波结果,而幅度很小但是出现概率很高的骚扰信号也有可能得到较高的准峰值检波结果,这种加权比较适合电子设备对骚扰信号的反应,也符合人的心理上对EMI骚扰程度的体验。

但是准峰值检波的平均过程测试时间长,并不利于日常的诊断。因此在进行EMI与兼容测试时,可以先用峰值检波快速发现EMI 问题频点,然后针对这些峰值点专门进行准峰值测量,以节省测试时间。对每一个点的准峰值检波测量,SSA3000X频谱分析仪还提供了驻留时间选项,既可以快速扫描,也可以更精细的测量,反映出测试频点的准峰值幅度。

SSA3000X的EMI选件:EMI滤波器,QP检波和QP检波器的驻留时间

 图 10 SSA3000X的EMI选件:EMI滤波器,QP检波和QP检波器的驻留时间

4,探头选件:SRF5030,9 kHz~3 GHz近场探头,分辨率从25mm到2mm,用于辐射骚扰测量。

如前所述,近场探头的幅度准确度较低,误差在10dB以上,尤其在高频误差将更大,仅能够作为定性判断工具使用,但却是大部分辐射骚扰测试的利器。Siglent近场探头SRF5030套装,提供4种不同分辨率的磁场探头,针对空间辐射,线缆,PCB等查找干扰源;同时选配30dB的前置放大器,以提高系统测试灵敏度。

不同分辨率的近场探头

  图 11 不同分辨率的近场探头

5,LISN和电流钳选件:SEM5040A和SEM5011,用于传导测量

SEM5040A人工电源网络是一款(50uH+5Ω)||50Ω V型 LISN(Line Impedance Stable Network),能在9 kHz到30 MHz射频范围内为被测试设备端子和参考地之间提供稳定的阻抗,同时将来自电网的无用信号与测量电路隔离开,仅将被测试设备的干扰电压耦合到测量接收机的输入端。

该产品的性能符合CISPR16-1-2:2006标准要求,适用于单相设备传导骚扰电压测量;标准的BNC输出接口和50欧姆输出阻抗,可匹配任何厂家的接收机、频谱仪等测量设备;产品自带模拟手功能,可模拟手持式设备测量;可选的150kHz高通滤波器,用户可以根据相应标准选择低端频率从9kHz还是150kHz开始;内置瞬态限幅器(10dB衰减),可以有效保护接收机或频谱仪不会因为大信号损坏,可以把EM5040A直接安全地连接到测量设备,不需要另外购买限幅器。

SEM5011射频电流探头是一款射频宽带电流互感器,适用于20 Hz到200 MHz的EMI干扰测量和屏蔽效果测量,具有300 kHz到120 MHz平坦的频率响应曲线,性能符合CISPR 16-1-2 标准要求,常用于夹在被测设备的电源线或者控制线上测量干扰信号电流的大小,电流探头的射频输出电压正比于被测干扰信号电流的大小。SEM5011 射频电流探头可以非常方便地夹在被测导线上,用在那些不能使用人工电源网络的 EMI 测量场合(如电流太大或接线困难等)。  
图 12 LISN:双线电源网络SEM5040A和电流钳SEM5011 

免费的PC机预兼容测试控制软件

6,免费的PC机预兼容测试控制软件:EasySpectrum

EasySpectrum是Siglent针对SSA3000X系列频谱分析仪而开发一款PC应用软件,该软件包括频谱仪基本控制和显示功能,也可用于进行EMI预兼容测试流程。该软件基于业界通用的标准驱动VISA设计,可以通过USB-TMC或LAN接口实现软件与仪器的通信,从而实现对仪器的应用控制。

EMI自动测试软件

图 13 EMI自动测试软件:EasySpectrum

EasySpectrum支持完整的EMI预兼容测试自动化实施流程。上文提到由于准峰值检波需要较长的测试时间,在全频段扫描时使用准峰值检波是非常耗时的,所以推荐设置中分为预扫描—寻找峰值—-终扫描三部分,预扫描使用峰值检波,可以快速的将全频段中的极大值找出来,然后按照幅度为这些峰值排序,最后在使用准峰值检波,对每个峰值点单独地进行准峰值测试,可以大大节省预兼容测试的时间。该软件支持全流程的文件配置,方便工程管理。

EasySpectrum的EMI预兼容测试流程

图 14 EasySpectrum的EMI预兼容测试流程

Tips

1,如何使用标准中的准峰值限制标准?

适用于产品的限制线标准须提前找到,然后再频谱分析仪中制作一条限制线,也是很方便的。参见扩展阅读部分内容。

2,峰值扫描的结果包含了哪些信息?

峰值扫描结果会比准峰值结果要高。在有限制线的情况下,如果峰值扫描都没有达到限制线,那么准峰值一定不会超过限制,这些频率点就可以从终扫的表格中去除,以节省终扫时间,因为终扫一般使用准峰值检波,测试时间较长。

3,准峰值扫描的驻留时间设置为多长比较合适?

驻留时间越长,能够接收到的骚扰的概率就越高,结果就越接近真实情况,但是会耗费更多时间。这是一个折中,需要用户自己根据实际的需求判断驻留时间设置多少,SSA3000X的准峰值检波驻留时间默认500ms,可以在0-1s内设置,代表每一个频点进行准峰值检波的时间。

4,想测试一下产品的辐射骚扰,可是没有EMI接收机,频谱仪上也没有EMI测试功能,怎么办?

要清楚当前阶段的主要目的是什么。如果只是EMI诊断,普通的频谱分析仪峰值扫描就可完成,没有必要进入预兼容测试的过程。

5,频谱分析仪具有EMI滤波器和准峰值检波功能,是不是可以进行产品的EMI预兼容测试了?

普通的频谱分析仪可以进行EMI诊断,不需要配置EMI和准峰值检波器。具有EMI滤波器和准峰值检波功能的频谱分析仪只是EMI预兼容测试系统的一部分,要想进行较完整的EMI预兼容测试,还需要有其他配套设备,环境和方法,例如LISN,合适的实验台等。可参见第三节的内容。

6,请问频谱仪测量辐射骚扰的功能是否遵循CISPR16-1-4标准?

SSA3000X频谱分析仪中的EMI滤波器和准峰值检波器,是根据CISPR16-1-1:2006测试设备规范设计的,而CISPR16-1-4内容是辐射骚扰辅助设备的规范,例如场地,天线等环境参数,需要额外配置,和测试主设备频谱分析仪没有关系。

服务与支持

史密斯圆图,懂它更懂网络分析仪

阅读 130
服务与支持

示波器的地连接到变压器副边或断开,都有100Hz的低频信号被耦合到示波器,为什么?怎样测试才是正确的?

阅读 210

电源工程师测量方面最大的痛苦: 测试某电子镇流器产品,被测电路和测量系统如图1所示,数字示波器由电网供电,示波器的地连接到隔离变压器副边的一端,利用高压差分探头测试输出悬浮电压(镇流灯)的两端。这个连接方法遵循IEC60929:2006(7.1.2&7.2.1&7.2)的要求,TUV组织要求用户这样测试,但是实际得到的测量结果看起来却是错误的….

 

Who IS Who?电源工程师测量方面最大的痛苦: 测试某电子镇流器产品,被测电路和测量系统如图1所示,数字示波器由电网供电,示波器的地连接到隔离变压器副边的一端,利用高压差分探头测试输出悬浮电压(镇流灯)的两端。这个连接方法遵循IEC60929:2006(7.1.2&7.2.1&7.2)的要求,TUV组织要求用户这样测试,但是实际得到的测量结果看起来却是错误的,如图2所示,大约有160V,100Hz低频电压被耦合到示波器;如果将示波器的地和变压器的副边断开,即示波器浮地,如图3所示连接,测量的结果如图4所示,仍然有100Hz的低频干扰。
 
问题来了:示波器的地连接到变压器副边或断开,都有100Hz的低频信号被耦合到示波器,为什么?怎样测试才是正确的? 
 
示波器的地和变压器器副边连接 
图1 数字示波器的地和变压器器副边连接
示波器的地和变压器器副边连接的测量结果,有低频100Hz扰动 
图2 数字示波器的地和变压器器副边连接的测量结果,有低频100Hz扰动

 
 示波器的地和变压器器副边断开


图3 数字示波器的地和变压器器副边断开(浮地)
示波器的地和变压器器副边断开(浮地) 的测量结果也有100Hz低频扰动 
图4 数字示波器的地和变压器器副边断开(浮地) 的测量结果也有100Hz低频扰动

服务与支持

电磁兼容测试:传导测试

阅读 248

进行电磁兼容测试需要相对专业的设备和技术,并且对于大多数公司来说,进行该项测试的费用也是相当高昂的。但是一般情况下大多数产品是需要通过专业的检测机构进行电磁兼容测试认证,才能完成一个完整的产品开发周期,从而被客户认可。 遗憾的是,很多产品都难以一次性通过电磁兼容测试。测试失败以后,工程师们需要解决在兼容测试中出现的问题的同时花费高额费用进行再次测试,这不但增加了成本而且延迟了产品的发布时间,这些对于公司来说都是重大的损失。 幸而,我们可以通过一些简易的设备和技术来帮助减少这种时间成本上的损失:预兼容测。

 

引言

进行电磁兼容测试需要相对专业的设备和技术,并且对于大多数公司来说,进行该项测试的费用也是相当高昂的。但是一般情况下大多数产品是需要通过专业的检测机构进行电磁兼容测试认证,才能完成一个完整的产品开发周期,从而被客户认可。

遗憾的是,很多产品都难以一次性通过电磁兼容测试。测试失败以后,工程师们需要解决在兼容测试中出现的问题的同时花费高额费用进行再次测试,这不但增加了成本而且延迟了产品的发布时间,这些对于公司来说都是重大的损失。
幸而,我们可以通过一些简易的设备和技术来帮助减少这种时间成本上的损失:预兼容测试技术可以找出并解决设计中的问题,从而免去多次使用昂贵测试设备的经济负担。

在这篇文章中,我们将要介绍如何用预兼容测试去进行传导测试。所涉及的相关技术可以减少重复进行兼容测试的次数,从而节省时间和金钱,同时可以使产品设计者对产品电磁设计方面的相关知识更了解,这些知识和经验也对设计者将来的相关产品设计大有裨益。

预兼容测试可以帮助你找到并解决可能阻碍你通过兼容测试的问题,但必须要知道,在大多数实验室环境下,预兼容测试并不能完全替代兼容测试!

传导干扰

传导干扰测试包括测量由任何连接在一起的线缆(包括电源线,信号线或者数据线)带来的射频干扰。大多数制定的电磁测量标准都主要关注测量市电交流电源线,因为电源线缆上过多的非供电能量会导致该相同电网下设备间的相互影响,尤其是对于调幅无线电信号或者是其它广播频段的影响尤为严重。

传导干扰测试需要一台频谱仪(如图1),两块做地使用的接合金属板,和一个线路阻抗稳定网络(LISN)。LISN为待测设备(DUT)提供电源,并且把待测设备射频信号通过电源线或信号线向外发射的干扰提取到频谱仪来测量。我们会加上瞬态保护以及衰减来减少待测大信号可能对频谱仪的损坏。

图1 频率范围为2.1GHz的频谱仪


图2 所示为一个典型的传导干扰测量的模型

图2 典型的传导干扰配置,用衰减器和瞬态抑制器来保护频谱仪的输入端(DUT指被测设备)。

搭建一个传导干扰试验模拟实验室相对经济可行,而且这种设备对环境中的其他射频信号是不敏感的,这使得传导预兼容测试的结果数据比辐射预兼容测试的结果数据要“干净准确”得多。

设备清单

频谱仪/EMI接收机:测量相对于频率的射频功率。频谱仪的最大输入频率不低于1GHz,DNAL最高为-100dBm(-40dBuV),至少10KHz的最小分辨率带宽(RBW)

瞬态抑制器(选配):频谱仪是敏感的射频能量测量设备,瞬态抑制器可以限制信号中瞬态毛刺的能量,避免造成频谱仪输入端口被击穿损坏。

 

衰减器(选配):对于可能存在的连续能量输入,使用几个3dB或10dB衰减器,以保护频谱仪的输入端免受意外的大功率信号损坏。

LISN把传导辐射从待测设备的电源线中耦合到频谱仪或者EMI接收机上,需要选择符合测试标准和电气需求的LISN。

注:通读你的LISN用户手册!有些设计可能存在一些危险电压,需要对设备安全操作!

水平地平面:导电金属片的尺寸至少要比被测设备外周的宽多15厘米,长度比其长40厘米,以适应从被测设备到垂直接地平面的间距。

垂直地平面:导电金属片的尺寸大于被测设备的外周宽多15厘米,长度长80厘米,以适应从被测设备到水平接地平面的间距,接地平面应使用低阻抗(例如导电带)沿着两个平面对接的地方互相连接。

LISN连接片:短金属导电片将LISN接合/接地到水平接地层,优先选择低阻抗(可能是薄的金属带)的导电片,尽量不要使用导线连接。

不导电台面:比待测设备大一点。可以是木制的,塑料制的或者是玻璃纤维的,一般不建议选择金属制的。

环境设置 

  • 把待测设备放到一个不导电台面的中间位置。
  • 将水平接地平面放置在被测设备下80厘米处,并正好位于被测设备正下方。
  • 将垂直接地层放置在距离被测设备中心40厘米的中心。并连接到水平地平面。
  • 使用LISN连接片将LISN连接到水平接地层。
  • 将频谱分析仪/EMI接收机放置在距离水平接地平面/测试区域边缘几英尺处,并将其接通电源。

环境检查 

  • 对频谱仪/EMI接收机进行上电预热。
  • 给LISN通电,但是此时不要给待测设备通电
  • 将LISN 射频输出连接到频谱分析仪的射频输入,同时加上瞬态限制器以及3dB或10dB的外部衰减器

配置频谱仪 

  • 设置起始频率为150kHz
  • 设置截止频率为30MHz
  • 设置RBW为1MHz
  • 将检测器设置为正峰值
  • 将LISN校正数据输入频谱分析仪,并启用校正功能以确保测量的准确性
  • 许多频谱仪具有创建Limit限值模板的功能。如果你的频谱仪有这个功能,可以把感兴趣的特定限值添加到频谱仪里。这样做可以可视化地显示您测试的值是否超过限值从而简化评估
  • (选配)如果使用瞬态抑制器,请将校正数据输入频谱仪,并启用校正功能以确保测量的准确性
  • (选配)如果使用外部衰减器,请将校正数据输入分析仪,并启用校正功能以确保测量的准确性
  • (选配)一些EMC限制标准的单位是dBuV和频率对数。大多数的频谱仪允许设置单位为dBuV,水平标度单位为频率对数。
  • 如果没有输入连接,请观察频谱分析仪上的迹线。它应该是平滑而且非常低的功率值。你也可以将RBW减少至10kHz或者直接关闭输出。这时的显示即为仪器的本底噪声。此时,我们可以把以上述步骤频谱仪上所显示的图片都保存下来,以供之后参考。

下面的图3展示了如上所述配置的频谱分析仪的开路频谱:


△图3 频谱分析仪的开路的本底噪声。注意dBuV幅度单位,对数频率缩放和蓝色限制线。这些功能使扫描评估更方便

第一次扫描:

  • 断开LISN输出与频谱分析仪输入的连接
  • 将电源线从被测设备连接到LISN。注意不要缠绕电源线。 确保它平放,并且不经过被测设备和水平地平面之间
  • 给被测设备上电
  • 再次把LISN的射频输出连接到频谱仪的射频输出

注:这些步骤给敏感的射频前端增加了一层保护。在这种情况下,对于一些具有可以减小抑制特点的LISN,这些步骤就是可用的。

  • 观察扫描结果并且标注任何3dB以内或者是超过限值的峰值。这些都是问题可能发生的区域。

注:你很有必要把频谱仪所测结果以及实验设置,仪器设置等任何与被测设备相关信息保存下来,无论是通过频谱仪的屏幕截屏功能还是用照相机。
如下图4所示一个峰值扫描失败的结果。


△图4 初步扫描显示超过B级限度的传导干扰

成功通过扫描和总结:
上面阐述的第一次扫描,是为了给寻找潜在干扰能量提供一个比较好的参考。但是,频谱仪的参数设置可以与大多数规格书中标示的设置不同,我们建议对频谱仪进行如下设置:RBW = 10kHz, Detector = Positive Peak, Span = 30MHz。这些设置可以使你尽快对问题区域进行分析,而且快速对待测设备的传导辐射能有一个基本概念。

以下是一些可进行更全面测试的参考技术方法:
1.大多数频谱仪没有预选滤波器。如果你使用一台没有预选滤波器的频谱仪,那么你得到的峰值可能是假的,这是由于带外信号混入到待测信号里面,没有预选滤波器的频谱仪有可能会得到一个错误的峰值。

你可以外加一个衰减器(3或者10dB)来测峰值。实际峰值减少的量将会和加入衰减的量一致。如果峰值减小的量比加入比衰减量大,那么这就可能是一个假峰。在你的测试结果记录上对这个假峰进行标注。你也可以使用标准的EMI滤波器或者预选器,这些操作虽然可以加快测试但同时也会带来高成本。

以下图5是一个典型的峰值测试实验,黄色的轨迹是没有使用衰减器得到的,紫色的则是给频谱仪的射频输入端外加了一个10 dB的衰减器得到的,这种情况下,峰值下降的量和所添加的衰减量是一致的。这帮助我们确认了该峰值是真峰而不是带外信号的产物。


△图5 使用频谱仪的标记功能对两次扫描结果进行标记黄色的轨迹是没有使用衰减器得到的,紫色的则是给频谱仪的射频输入端外加了一个10dB的衰减器得到的

2.一些频谱仪会选配非常接近标准兼容测试所需的工具包

  • EMI 滤波器 (根据不同频率而选择6dB或者3dB的标准)
  • RBW 带宽:200Hz, 9kHz, 或120kHz
  • 准峰值检波器

假设DUT待测电路中具有突发的RF,间歇数字通信或瞬态输出等信号,如果可能的话,那就需要使用EMI滤波器、RBW带宽,准峰值检波器再次对待测设备进行扫描。

通过将分析仪的中心频率设置为感兴趣的峰值频率去对失败的峰值进行放大观察。设置扫宽为指定标准RBW的10倍(如果指定RBW为9kHz,那么设置扫宽为90kHz或100kHz),然后开启EMI滤波功能,使用准峰值检波器,RBW设为9kHz,观察扫描结果。

准峰值检波器进行扫描时间会比较长,准峰值测量结果也不会超过正峰值,但是使用准峰值扫描可以减少设计方案所用的时间。

3.一些频谱仪有最大保持功能,可以保存下来每一次扫描频率的最高幅值。你可以通过设置一条迹线为清除写入状态来表示当前输入的射频信号,并且设置另一条迹线为最大保持状态。这些操作使你可以对比待测设备的变化和在最糟糕的情况下获得的数据或者是使用最大保持功能所保存下的数据。

4.如果可能的话,你可以使用光标工具和峰值记录表来清楚的获取峰值的频率和幅度。


△图6 使用峰值表和光标的频谱仪SSA3000X界面

软件
为了减少用户的EMI预兼容环境设置,收集数据和测试报告整理的繁琐步骤,EasySpectrum软件给用户提供了一个集中设置,快速存储和回调校准数据和设置限制线功能,整理扫描报告的环境。


△ 图7  由鼎阳的EasySpectrum上位机软件所获的EMI扫描报告

总结

只要是连接到交流电网上的电器产品都需要通过电磁兼容传导测试。虽然各公司可以进行自我认证,但建议由第三方实验室进行严格的兼容性合规测试。只是第三方实验室的测试花费比较高,并且时间较长。而通过使用一些简单的工具,你可以进行一些室内的预兼容测试,从而减小产品的整个生产周期,降低设计成本,减少兼容测试的次数,也为将来的产品设计积累经验。

服务与支持

随意使用交流耦合可能造成严重误差 ?示波器的交流耦合和直流偏移功能详解

阅读 155
服务与支持

一文教你如何用万用表进行多通道采集测试!

阅读 148
服务与支持

如何进行电源调制分析?

阅读 122
服务与支持

一文读懂高速信号测试!

阅读 116
服务与支持

视频/音频协议!总线协议触发与解码解决方案(四)

阅读 79